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Higher-band self-trapping and oscillation (rotation) of nonlinear quadruple beams in two-dimensional (2D)
square photonic lattices are numerically demonstrated. Under appropriate conditions of nonlinearity, a
quadruple-like beam can self-trap into localized modes that reside in the second Bragg reflection gap
through single-site excitation. By changing the initial orientation of the incident quadruple beam related
to the lattices, periodic oscillations of the localized quadruple mode may be obtained. The localized
quadruple state becomes a rotating doubly charged optical vortex (DCV) during rotation and should
undergo charge-flipping when the rotating direction is reversed.
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Linear and non-linear light propagation in periodic pho-
tonic lattice has attracted strong research interest in re-
cent years, and many fascinating light behaviors[1] have
been demonstrated to contain a physical essence beyond
optics, such as Anderson localization[2], Bloch oscillation,
and Zener tunneling[3]. Photonic lattices serve as an ideal
platform for exploring various fundamental issues in dis-
crete systems, and exciting phenomena in new lattice
settings, including super lattices[4], ionic-type photonic
lattices[5], and three-dimensional photonic lattices[6,7],
have been demonstrated. In a linear photonic lattice,
light propagation is modulated in accordance with the
Floquet-Bloch theorem[8]. The continuous spatial trans-
mission spectrum is split into separate bands by forbid-
den gaps at the boundaries of the Brillouin zone due to
Bragg reflections of the periodic potential. In the pres-
ence of appropriate nonlinearity, discrete diffractions can
be balanced, with light self-trapping into localized states
as lattice solitons. Many types of localized modes re-
siding in different band gaps have been reported exper-
imentally or theoretically in optically-induced photonic
lattices on the basis of various band-gap structures, such
as fundamental solitons[9], dipole solitons[10−13], vortex
solitons[14,15], bandgap surface vortex solitons[16], higher-
band vortex solitons[17], and embedded-soliton trains[18],
to name only a few. Rotating properties of lattice solitons
have also been demonstrated[19−23]. For instance, in op-
tically induced periodic ring lattices, the soliton rotation
in different lattice rings can be controlled by imposing an
initial transverse momentum on the soliton[21]. Doubly
charged vortices (DCVs)[22] and dipole solitons[23] have
been reported to experience rotations in a square pho-
tonic lattice, which is especially interesting because the
dipole soliton itself initially carries no angular momen-
tum. Nevertheless, all of the solitons mentioned above
are discrete solitons or gap solitons existing in the total
internal reflection gap and the first Bragg reflection band
gap. Therefore, whether or not a localized state residing
in higher band gaps can be excited, as well as the dy-
namics of such excitation, must be investigated.

In this letter, we firstly calculate the dispersion relation
(band structure) of two-dimensional (2D) square lattices
and then determine the possibilities for localized quadru-
ple states that reside in the second Bragg reflection band
gap by inputting a quadruple-like beam through single-
site excitation and investigating its rotational proper-
ties by analyzing its linear and nonlinear propagation in
different orientations relative to the lattices.

Beam propagation through an optically induced pho-
tonic lattice in a biased photorefractive crystal is gov-
erned by the paraxial non-linear Schrödinger equation[24]:
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where ψ is the slowly varying complex ampli-
tude of the probe beam, ζ = 0, 1 represent lin-
ear and nonlinear conditions, respectively, Ib =

Ig {cos [π (x+ y)/d] + cos [π (x− y)/d]}
2

is the lattice
potential translated into a change in the refractive in-
dex ∆n through the non-linearity in a photorefractive
crystal, Ig is the lattice peak intensity in units of back-
ground irradiance, and d = 23 µm is the lattice spacing.
The lattice is written in this fashion because it can be
optically induced by interfering beams of ordinary polar-
ization in experimental conditions. The probe beam is
extraordinarily polarized along the crystalline c axis. The
dimensionless variables x, y, and z are normalized to the
typical scales xs = ys = 1 µm, and zs = 1 mm, respec-
tively. The diffraction coefficient is D = zsλ/4πnex

2
s ,

γ = 0.5k0n
3
eγ33E0zs is a nonlinear coefficient propor-

tional to the electro-optic coefficient γ33 and the applied
direct current (DC) field voltage E0, and K0 is the wave
number. ne = 2.35 is the extraordinary refractive in-
dex of bulk photorefractive Strontium-Barium Niobate
(SBN) crystal, and λ = 532 nm is the laser wavelength
in vacuum. These parameters are selected so that they
are consistent with a typical experimental setup[9,24−27].

The dispersion relation and Bloch modes for high-
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symmetry points of such square photonic lattices are
firstly studied. Light propagation in a periodic photonic
lattice is characterized by the spatially-extended eigen-
modes or Bloch waves[8]. Bloch waves are found as so-
lutions of the linearized lattice equation, i.e., the linear
form of Eq. (1) is

i
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+D

(

∂2ψ

∂x2
+
∂2ψ
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)

−
γψ

1 + Ib (x, y)
= 0, (2)

in the form ψ = e−iβzu (r), r = (x, y). Substituting this
into Eq. (2), the eigenproblem can be obtained:
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u (r;k) has the form u (r;k) = eik·rU (r;k), where
U (r;k) possesses the same periodicity as the lattice po-
tential, k = (kx, ky) is the wave number, and β (k) is
the dispersion relation. Eigenproblem (3) can be solved
numerically. For the square lattice shown in Fig. 1(a),
β (k) is depicted in Fig. 1(c), which is invariant with re-
spect to the translation kx,y → kx,y±2π/d, and therefore
fully defined by its values in the first Brillouin zone (Fig.
1(b)). Unlike the case of low lattice potential[24], a high
lattice potential of Ig = 1.50 and a nonlinear coefficient
of γ = 6.00 (corresponding to E0 = 280 V/mm) are
selected so that the higher band gap can remain open.
Figure 1(c) clearly shows that two complete gaps exist
in this case. Bloch waves from different high-symmetry
points of the first and second spectral bands have been
previously discussed[24]. Here, calculated Bloch waves of
the special high-symmetry points X and M in the third
band, corresponding to the red points in Fig. 1(c), are
shown; these waves will be used in the following discus-
sion. Point M is located at the top of the third band,
while point X is embedded in the band. Figures 1(d)–(g)
show the intensities and corresponding phase structures.
Figure 1(d) shows that Bloch waves have three intensity
maxima centered between one lattice maximum for point
X . Bloch waves originating from point M have four in-
tensity maxima centered between the maximum of the
square lattice (Fig. 1(f)), and the phase distribution re-
sembles a chessboard for the four maxima (Fig. 1(g)).

Wave propagation in the square lattice is studied nu-
merically by launching a beam with a quadruple struc-
ture:

U (x, y) = A

3
∑

n=0

e−[(x−xn)2+(y−yn)2]/r2+i(1+(−1)n)π/2,

(4)

xn = r cos θn, yn = r sin θn, θn =
nπ

2
+ θ, (5)

where xn and yn represent the locations of incident
beams, θ is the angle between the orientation of the
quadruple-like beam and the vertical axes of the lattice,

and |A|
2

= 1 is the peak intensity of the probe beam. In
our simulation, the lattice intensity Ig = 1.0 is selected;
thus, the real probe-to-lattice beam peak intensity ratio
is about 1:4. For the quadruple-like beam, two tails are in
phase in diagonal and out of phase with nearest ones. To
generate single-site excitation, the parameter r = 0.2d

is used. By solving Eq. (1) using the split-up beam
propagation method, the propagation process can be nu-
merically simulated. Figure 2 shows typical results for
two fundamentally excited modes, vertical and diagonal
excitation, representing θ = 0 and θ = π/4, respectively.
Under the condition of self-focusing nonlinearity with
a biased field E0 = 600 V/mm (γ = 13), the incident
quadruple-like beam can self-trap into localized quadru-
ple modes (Figs. 2(c) and (g)), exiting the lattice with
an intensity structure similar to that of the input. Under
linear conditions (ζ = 0), the input quadruple-like beam
experiences discrete diffraction in the square lattice, exit-
ing at z = 60 of propagation with the intensity structure
depicted in Figs. 2(b) and (f) (the transverse zone is
two times larger than that in other figures). The re-
sults clearly show preferential transport along the lattice
axes and that the diffraction tails have three intensity
peaks at each lattice site when θ = 0, which matches
the Bloch mode at point X of the third band, as shown
in Fig. 1(c). However, when θ = π/4, the output mode

Fig. 1. (Color online) Top row: (a) refractive index of a square
lattice; (b) the corresponding first Brillouin zone with high-
symmetry points; (c) calculated band gap dispersion relation
β(k) for Ig = 1.50, γ = 6.00. Bottom row: bloch modes of
high-symmetry points corresponding to the marked red dots
in (c). (d, e) and (f, g) show the intensity and phase structure
of X and M in the third band, respectively. The blue color
of the phase distribution corresponds to the zero phase, while
the red color corresponds to the π phase.

Fig. 2. (Color online) Simulated propagation of two funda-
mental incident modes: θ = 0 (upper row) and θ = π/4
(bottom row). (a), (e) Intensity of the input beam with the
lattice in the background (the real quadruple-to-lattice beam
peak intensity ratio is about 1:4); (b), (f) linear diffraction
(nonlinearity off) after 60 mm of propagation in twice as large
a space; (c), (g) nonlinear output quadruple localized mode
for E0 = 600 V/mm; (d), (h) the corresponding Fourier spec-
trum. The white square marks the Brillouin zone. In all
figures, the inset shows the corresponding phase structure.
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(Fig. 2(f)) shows the characteristics of the Bloch mode
at point M of the third band. According to the solitary-
wave structure bifurcated from edges of Bloch bands[28],
localized quadruple states can be seen as localized waves
bifurcating from the third band edge close to points X
and M . Fourier spectra (Figs. 2(d) and (h)) of the two
localized states also reveal that they are high band gap
localized states close to the high-symmetry points X and
M . Output modes at other locations are also considered;
the same output pattern is obtained and the localized
quadruple states are very well preserved during propa-
gation. In summary, high band gap localized quadruple
modes close to different high-symmetry points X and
M of the third band can be excited under appropriate
self-focusing nonlinearity.

Next, the quadruple-like beam is inputted with other
orientations and all other parameters are left unchanged.
We then consider the case of θ = 8◦ (Fig. 3(a)). The
nonlinear output pattern (Fig. 3(c)) reveals that the
quadruple-like beam can still trap itself into a localized
state, but its orientation changes and its intensity tends
to distribute into a ring, which is more apparent in Figs.
4(d) and (f). Figure 3(b) depicts the corresponding linear
output, wherein the diffraction tails have three intensity
peaks at each lattice site along the principal axes of the
lattice, resembling the character of the Bloch mode at
point X of the third band. Along the lattice diagonal
axes, the diffraction tails have four intensity peaks at
each lattice site, resembling the character of the Bloch
mode at point M of the third band. The Fourier spec-
trum obtained (Fig. 3(d)) also shows that the spatial
spectrum is rotated because of the change in initial ori-
entation.

To explore the dynamics of such a special rotation in
detail, the propagation of the quadruple localized mode
over a longer distance is investigated. The results of beam
propagation simulated up to z = 80 (Fig. 4(b)) clearly
demonstrate that the input localized state experiences
periodic oscillation during propagation. By analyzing the
output states at different locations, the localized mode
appears to oscillate around the diagonal axis (θ = π/4)
of the lattice. Figures 4(c)–(f) depict the output intensi-
ties and phase structures corresponding to propagation
lengths of 43, 55, 66, and 77, respectively, where the four
dashed lines in Fig. 4(b) are located. Figures 4(c) and
4(e) show quadruple states in which the oscillation begins
to reverse and the degree of oscillation reaches a maxi-
mum. The output state at z = 43 is similar to the input
state, after which it rotates clockwise. Nevertheless, the
intensity and phase structure at z = 55 illustrate that
the quadruple localized state develops into a DCV with
a 4π helical phase structure (m = 2) around the singu-
lar point. The DCV continues to rotate clockwise and
break into a quadruple localized structure until it reaches
z = 66 (Fig. 4(e)). The angle between the orientation of
the quadruple localized state and the horizontal direction
is close to the incident orientation angle θ. Thereafter,
the quadruple state rotates counterclockwise, and a DCV
with opposite charge m = −2, indicating charge flipping,
appears. In summary, the intensity and phase distri-
bution of the localized state varies during propagation,
as exhibited by the periodic appearance of a quadru-
ple structure, an m = 2 vortex, a quadruple structure,

Fig. 3. (Color online) Simulated propagation for θ = 8◦. (a)
Intensity of the quadruple-like beam; (b) linear diffraction
(nonlinearity off) after 60 mm of propagation in twice as large
a space; (c) nonlinear output quadruple localized mode and
(d) its corresponding Fourier spectrum.

Fig. 4. (Color online) Oscillation of the localized quadruple
mode for θ = 8◦. Top row: (a) lattice pattern with the waveg-
uide excited by the quadruple-like beam in a single site; (b)
side-view of propagation to z = 80. Middle row: (c)–(f) non-
linear output intensity corresponding to the location of white
dashed lines in (b) with the phase structure inset; from (c) to
(f), z = 43, 55, 66, and 77, respectively, Bottom row: corre-
sponding interferograms with a tilted plane wave.

and a m = −2 vortex. To verify the phase structure,
interferograms with a tilted plane wave of the output
modes are shown in the bottom row of Fig. 4, which
reveals that two humps in diagonal remain in phase for
quadruple localized states (Figs. 4(c) and (e)). Topo-
logical charges in the vortices are reversed when the
oscillation direction is reversed (Figs. 4(d) and (f)).

When other cases for different θ are considered, the
results indicate that the quadruple structure tends to
oscillate around the diagonal axis and evolve into DCVs
during propagation, except for cases of vertical and di-
agonal excitation. Analysis of the period of the oscil-
lation shows that the rate of oscillation becomes slower
and, as a result, the oscillation period becomes longer
when the orientation of the incident beam approaches
the vertical axis (θ = 0) of the lattice. Our results are
comparable with the work of Bartal et al.[29], who de-
scribed second-band single-charged vortex solitons in 2D
photonic lattices. Such solitons can be viewed as a co-
herent superposition of two degenerate modes associated
with the second band point X with the same propaga-
tion constant. In our simulation, the novel oscillation
and appearance of DCV states with periodically flipping
vorticity arise from the superposition of two eigenmodes
belonging to different high-symmetry points X and M of
the third band. Considering different propagation con-
stants, their phase difference changes periodically along
the distance of propagation, resulting in the periodic ap-
pearance of vortices and charge flipping.

In conclusion, the self-trapping and oscillation of high
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band gap quadruple localized modes in 2D optically
induced square photonic lattices are studied theoreti-
cally. Bloch modes belonging to different high-symmetry
points in the high band are excited by excitation of a
quadruple-like beam in a single site. The quadruple-like
beam can become self-trapped into localized modes by an
appropriate self-focusing nonlinearity. Such a special lo-
calized state can evolve into DCVs and undergo periodic
charge-flipping during propagation solely by changing
the orientation relative to the photonic lattices. These
results can be useful for theoretical or experimental stud-
ies on quadruple beams and vortices in other photonic
lattices and discrete nonlinear systems.
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